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RHYTHMIC PHENOMENA
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In a number of areas of science and technology it is necessary to
deal with rhythmic processes, such as the parasitic modulation of shot
fluctuations in radio-electronic equipment [8,9], changes in the levels
of stability of oscillatory parameters of biological systems [12],
modulation of an acoustic field in a layer of water due to heaving of
its surface [7, 13], change in meteorological parameters under the
action of tidal forces [14], etc. Many investigators [1, 11, 12] note
the advisability of using methods of the theory of stationary random
processes for analyzing such essentially nonstationary phenomena as
biological, etc. rhythms, and stress the necessity of developing
statistical methods, based directly on the properties of this type of
nonstationary processes and having an explicit interpretation. The
frequently used additive model - the determinate periodic function
f(t) on a background of stationary noise V(t)- f(t)+ V(t), analyzable

by methods of the theory of processes with stationary pulsations, does
not describe the main property of rhythmic phenomena - change in the
parameters of the process, analogous to pulsations (of modulation). A
multiplicative model of the type of modulation - ý(t) f•t), where
I (t) - stationary process, although it describes this feature it is
not general. Therefore the need arose for developing a general
probability model of rhythmic phenomena and on this base to develop
effective methods for analyzing them. Although in the literature [11]
the important role of a study of periodic nonstationary random
processes is noted in connection with an analysis of rhythmic
phenomena, this thesis is in no way substantiated, and the theory of
this class of processes is found in the initial phase of development,
to say nothing of its applications. In work [8] only the process of a
type of modulation is studied. Taking this into consideration, the
author together with K.S. Voychishin made an attempt at developing and
substantiating a general model of rhythmic phenomena. The idea of
creating such a model as a base for developing methods of analyzing
them, the use for this purpose of periodical)y correlated (PK) random
processes (SP)*, and the proof of the necessary theorems belong to the
author, and for substantiation of the model the results from processing
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the materials of observations cf the bioactivity of loaches and
meteorological elements which were obtained by K.S. Voychishin were
used considerably.

* Footnote. Here, just as in work [5], we will use the term
"periodically correlated" in the sense of "periodically nonstatlonary
of the second order" (or in a wide sense, if an analogy with stationary
processes is used). This class of processes is sufficient for the
theory being developed. Periodic nonstationary in a narrow sense is
defined, as usual, through the periodic nature of n-dimensional
distributions of probabilities [11]. [End of footnote]

For creating a meaningful theory, in contrast to mathematical, it
is not sufficient just to select axioms, it is also necessary that they
represent significant sides of the phenomenon for which the theory is
being constructed. Therefore in work [2] on the basis of an analysis
of tracings of rhythmic phenomena it is postulated that if a phenomenon
takes place in an unchanged mode, then it is reasonable to accept the
following as its significant characteristics: a) noise-like nature,
i.e., the fundamental impossibility of their representation in the form
of a complex determinate function; b) harmonizaDility - separability
into simple harmonic components; c) nonstationary state of the type of
modulation, characterized by a periodic change in dispersion, and this
means in covariation.

From these postulates it follows [6] that in the correlation
theory a periodically correlated random process (PKSP) should be a
general model of a rhythmic phenomenon.

The purpose of this article, just like that of article [6],
developing the ideas of work [5] and supplementing work [2], is a
further study of the structural properties of PKSP as a model of
rhythms, but in contrast to article (6] the mathematical expectation of
PKSP, generally speaking, is considered different from zero.

Definition 1. We will call the random process (SP) centered if
its mathematical expectation is equal to zero.

Then from a presentation of PKSP through stationary components
(SK) [6]

and the uniqueness of the expansion into a Fourier series follows the
validity of the theorem.
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Theorem 1. A PKSP is centered whenf and only when, its stationary
components are centered.

Theorem 2. If the SK PKSP is uncorrelated and centered, with the
exception maybe of zero, then it degenerates into into a stationary SP,
if the SK are only uncorrelated, then into SP with stationary
pulsations and a periodic mean.

Actually, from correlation [5]

(where rk,j(.) - mutual covariation of k- and j-th SK under the
condition of noncorrelation of SK rk,j(u)=rk(u)S j,k, from which
rl,ll-k(u)=rl(u) Sk,O) we obtain

bt( U ) ri () e BO (u).

where B 0 (-) - covariation of a stationary approximation to PKSP [5],
i.e., SP ý (t) is stationary relative to covariation. And for the
mathematical expectation from formula (1) we find

Lh•t

where mk=E T'k(t) - in a general case (for all mkRO) a periodic
function with a period of correlation.

Theorem 3. The non-correlatedness of odd SK PKSP with even and
paired together is sufficient so that its covariation would possess
half a period.

Actually, under the conditions of the theorem

{0, if (jVk) are odd
rjk(u), if (JAk) are even,

and then in equality (2) Bh(U)= r rN.._(.)= -) is identically
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equal to zero in the case of odd k.

Corollaryj. Under the conditions of the theorem a FKSP possesses
a half a period if its odd SK are centered.

Corollary 2. The absence of SK is sufficient so that the PKSP
would possess half a period.

Corollary 3. Centered SK, non-correlated pairwise and with all
the remainder, can be related to zero.

When all the SK are linear transforms of one of them (for example,
this will happen when the PKSP is obtained by conversion of a
stationary SP by a system with periodically changing parameters):

h(A = () =e dZ

where 1/( -) - frequency characteristic of the corresponding invariant
filter Ak, then

~~(t4. T) ¶h(kjd(kT)

and the correlation components (KK)

COs O

and the covariations of components

CM

rhit (u) = e'f (X.) iF; (X) dS (X).

From here it is evident that the components will be non-correlated if

WhQ) *(%)=O.

In the particular case under consideration it is directly evident
that a situation is possible when Bk(O)=O and Bk(u)#O0 in the case of
u•-O. For this it is sufficient to assume that the j-th SK is the k-th
Hilbert transform , i.e., 1 ( )=l, and 'i?, (9)=-i sgn 2 since

.l(u) - 2 ý sin (
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Example. Assume

(1) = t(I)EIAI+ (i)-' 4 .

where V - denotes the conversion to the Hilbert transform, then

taking '•{U)r"(u)/,|.m -, (-'i) intc account we obtain

bq((tu) ' 2 r1(u)cos.% u+- B1 (u))2lt , wheI-e B(u)R= r )eiAm -r r (--u)-UAu,, f rom here

B2=0. The dispersion of this process oa(t)=2 (O)=2o•const If the

process S (t) is noncentered and E 5(t)=m, then m (t)=2m cos At.

In the case when the converter is a differential cperator wlth
N

periodic coefficients (a (i).-I-=T/•.) , then *k a)= i a:(11 , where 4/
I-0

the k-th coefficient of the Fourier function al(•). When only the
actual process in the steady-state mode are considered, then odd 1 are
absent and the period of correlatedness of the process will be equal to
half of the period of change of the parameters of the converter. Then,
having designated the product of the series

Im-.=oS flm-- = r--rnL- -rn. Jm

for the covariation SK we find

'hj (") (kS e"P, (.) ds (L).

If we designate _( an even part of spectral density and

take into account the evenness of functions a•(.) , then

'r2.2i (0) 2 S P2k.21 ()L) s+ (X) d),.
0

since the integral with an odd part is equal to zero. From here the

initial value of KK according to formula (2) B.A(O)=SQh(hLs)s+(X)d;A , where
N 0

Q2(0)=2'- p2 , ()...2) For example, for operators of the second and
1-0

5



fourth orders Q•kA(0)= 4

_ 4 ;.6 ja 4 2 4 2 ~ 2
-2 (12 = X$ ja2 (1_* la2-) Q'2 (,.k)02 1 ,+ ;L a .a-2(I

It follows from this that the values of KK in zero only in
exceptional cases will be zeros, i.e., for steady-state processes,
representing transforms of stationary processes with the help of
differential operators with periodic coefficients, as a rule, the
dispersion and mathematical expectation (if the processes are not
centered) possess a precise period, equal to the period of
correlatedness and are half of the period of change of the operator
coefficients. Thus the PKSP, the result of a stationary disturbance of
a system with periodically changing parameters, will possess a period
which is half the period of change of its parameters.

The null covariation component describes the distribution of
energy by harmonics which make up the PKSP [6], and therefore its role
in the characteristics of the process is not at all different from the
role of other KK, which is also evident from the following theorems.

Theorem 4. In order that the zero KK be identically equal to zero
it is necessary and sufficient that it be equal to zero in zero.

This follows directly from the fact that BO(-) is a covariation of
a stationary approximation to PKSP, and the covariation of the
stationary process satisfies the condition r 1 (u).4r (0)= c , which in
this case gives the inequality IBo(u)/.,Bo(u).

From formula (2) we find that B*(O)= r (O) and since all
SlI--.-

rt 1402 > 0 as dispersions of stationary processes, then the equality

Bo(O)=O is possible only in the case when all 0 =0. But since from

this same formula (2) IBA), ( IrjL.j_,kU)I and the mutual covariation of

stationary processes satisfies the inequality Irlk(u)1'<r,(O)rl(O , then

from here follows the conclusion, which, in view of its importance, we
will formulate as a lemma.

Lemma 1. If Bo(O)=O, then all KK are identically equal to zero.

6



Actually, since when B0 (O)=O pulsations are ansent, the process
degenerates into a determinate function. Thus the following thee crm
takes place.

Theorem 5. Equality to zero of the value in zero of a zero KK is
necessary and sufficient so that the PKSP would degenerate into a
determinate function (equal to its average).

The sufficiency of the condition follows from formula (8), lemra 1

and the definition of dispersio 2 o(t=bt(t,.0). And the necessity is

evident from the fact that the dispersion cf pulsations of a

determinate function is equal to zero. Then from the property of

covariation Ib t'u)1<a0(t+U)aM( it follows that lb (tu)j10 , and

since , then Bk(u)=O in the case of all k and u.
0

Definition 2. As normalization of SP we will name, in an analogy
with normalization of random variables, the transition from process
S(t) to process

M, (1) (3)i

Its covariation

b- (t,u) b_ b(t. u) (4)

and the average and dispersion, naturally, are defined as rn-(t) =0,0-(t)0=1
t t

in the case of all t. Therefore the unique characteristic of rhythm of
a normalized PKSP can only be covariation. Since formulas (3) and (4)
have meaning, when OQ' (t)v.rO for all t, then from formula (2) it follows

t',at the function at(t+u) a(t) =- V V_ Bm_ (0)B(0)e

is periodic with respect to t with a period T and is non-vanishing.

Then based on the Wiener theorem [3] the function [a(t Vu +) at (O)F

is expanded into an absolutely convergent trigonometric series of the
same order.
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Since the product of the periodic functions of one period is a periodic
function of the same period, then this proves the validity of the
theorem.

Theorem 6. The periodic correlatedness of an SP is invariant with
respect to its normalization.

In particular, the covariation of a normalized PKSP, possessing a
constant dispersion (evidently 6 (t)=B0 (0)), will be

±18 a (u) eo pocese
bB61(t.uA)- .. 7 . t is advisable that normalization of processes

by applied in the case of a comparative study of the rhythm of
diverse-scale physical and other parameters.

Assume now that 1 (t) - a stationary SP with the covariation

R1(-), and f(f• -edF(4, where F() - certain complex measure of

limited variation, then the process

E W = u(Of(M (5)

is harmonizable [10] and its function of covariation

b. (t.u) = Rj (i.) (t + u) f (t), (6)

and dispersion

atan I WI US= u'.l f(r) (It

Then the normalized function of covariation

b & (t, u) - Q, (u) et m *• t]

Rw e (u)where 0()=a-•
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Definition --3. A process of the type (5 we will call a prccess of
the type of simple modulation.

If the function f(-) is periodic and - - :ts Fourier
coefficients, then the KK of the process g (t) will beBi, M = R, (U) C,,Ce

The following theorems stem from the previous formulas.

Theorem 7. A process of the type of simple modulation with an
actual periodic modulating function is a PKSP which has been normalized
rto stationary.

Actually under the conditions of the theorem by(t, u)= ¾(u).

Theorem 8. A symmetry of the third kind of a modulating function
of an SP of the type of simple modulation is a necessary and sufficient
condition of the fact that the period of its dispersion would be half
the period of the correlated state.

The condition of symmetry of the third kind is fulfillment of the

equality I t+-L- ) -f(t)in the case of all t, therefore the function

possesses a period -- and confirmation of the theorem follows
from formula (7). 2

Theorem 9. Simple modulation is necessary and sufficient for the
conversion of white noise into nonstationary white noise, and if the
modulating function is periodic, then this is PK noise [6).

The necessity follows from the definition of nonstationary white
noise and the fact that the negative function is a square of the
modulus of the function g(t)=If(t)/ 2 ,O, and the sufficiency is found
from formula (6) and the property of the S-function:

&(x-a) f (x)= S (x-a) f (a).

From the analysis made of the PKSP it is evident that the precise
period of dispersion depends on the values in the zero of the KK, and
the precise period of the average - on the centrality of the SK. Since
in a general case these properties are independent, then the period of
dispersion and the period of the average can be used for estimating the
precise period of correlatedness of the PKSP. In this case the
dispersion is more significant than the average, which frequently is
considered equal to zero [4]. The most significant characteristic is
the function of covariation, describing the correlatedness of the
harmonic components of the PKSP, and its period is determined by the
KK.
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In particular, for a normalized PKSP the function of covariation is the
unique characteristic of rhythm.

It is evident from formula (1) that when all SK are proportional
to one of them, which can be considered as zero, i.e., when
gk(t)=Ock ; 0 (t), where { Ck} - complex numbers, then the PKSP turns

into a process of the type of simple modulation

(t)~~ ~ fe=% t (t).am

If all the SK are non-correlated and non-centered, then the PKSP turns
into an additive model - a periodic determinate function on a
background of stationary noise:

k--,

where 1 (t) - stationary SP with a null average and the covariation

(U) Y3 rl "U) e t -

It is evident from the considerations presented that the idea of
isolation of the determinate component of the rhythmic phenomenon and
the study of the stationary residual turns out to be inconsistent,
since only in an additive model can it have direct meaning. In this
case the stationary residual cannot describe the rhythmic nature, and
in other models the residual is not stationary.

The theorems proved above jointly with the theorems in works [5,6]
serve as substantiation of the model of rhythmic phenomenon as PKSP and
reveal a series of its significant properties, and also show that
neither additive nor multiplicative models can be considered as the
most general for rhythmic phenomena, biological in particular, which
both by isolation of mathematical expectation and by normalization are
not reduced to stationary processes.
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